skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Araki, Jun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Systems for knowledge-intensive tasks such as open-domain question answering (QA) usually consist of two stages: efficient retrieval of relevant documents from a large corpus and detailed reading of the selected documents. This is usually done through two separate models, a retriever that encodes the query and finds nearest neighbors, and a reader based on Transformers. These two components are usually modeled separately, which necessitates a cumbersome implementation and is awkward to optimize in an end-to-end fashion. In this paper, we revisit this design and eschew the separate architecture and training in favor of a single Transformer that performs retrieval as attention (RAA), and end-to-end training solely based on supervision from the end QA task. We demonstrate for the first time that an end-to-end trained single Transformer can achieve both competitive retrieval and QA performance on in-domain datasets, matching or even slightly outperforming state-of-the-art dense retrievers and readers. Moreover, end-to-end adaptation of our model significantly boosts its performance on out-of-domain datasets in both supervised and unsupervised settings, making our model a simple and adaptable end-to-end solution for knowledge-intensive tasks. 
    more » « less
  2. null (Ed.)
  3. Recent work has presented intriguing results examining the knowledge contained in language models (LMs) by having the LM fill in the blanks of prompts such as “ Obama is a __ by profession”. These prompts are usually manually created, and quite possibly sub-optimal; another prompt such as “ Obama worked as a __ ” may result in more accurately predicting the correct profession. Because of this, given an inappropriate prompt, we might fail to retrieve facts that the LM does know, and thus any given prompt only provides a lower bound estimate of the knowledge contained in an LM. In this paper, we attempt to more accurately estimate the knowledge contained in LMs by automatically discovering better prompts to use in this querying process. Specifically, we propose mining-based and paraphrasing-based methods to automatically generate high-quality and diverse prompts, as well as ensemble methods to combine answers from different prompts. Extensive experiments on the LAMA benchmark for extracting relational knowledge from LMs demonstrate that our methods can improve accuracy from 31.1% to 39.6%, providing a tighter lower bound on what LMs know. We have released the code and the resulting LM Prompt And Query Archive (LPAQA) at https://github.com/jzbjyb/LPAQA . 
    more » « less